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1 Introduction
Autonomious agents that respond intelligently inl dynamic. complex environl-
merits, rnced to display a range of capabilities that have yet to be found in a

* single system. Deliberative systems that embody powerful techniques for rea-
* soning about actions often fail to guarantee a timiely response in time-critical

situations (7]. Also, systems that respond well in time-critical situations typ-
ically do riot provide a reasonable response inl situations unforeseen by the
designer [61. An agent shiould be able to comrbine timely responses to well-
understood situations withi the ability to synthesize appropriate responses to
n1ovel Situations. The performance of the agent should also dlegradle gracefully
in sitiratioris that are increasingly novel and tirmie-critical.

Reactive systems have traditionally been rmore successful thian deliberative
ones inl controlling agents iii the types of dlynmirc dlomairns tHatl, interest US.
They tenid to be fast anil designed specifically for controlling thle execution
of actions inl dynamiic environments. They also allow thle. builder to create id-
iosyrncratic behaviors, whichi may be important inl sonic dlomains or for creating
more -realistic" behavior. Bunilding a reactive system n. however, is frequently
a comp~lex and time-consuming enideavor becaurse of the need to pre-codle all
of thle behlaviors of thle, systelli.

Dclii eriti ye systems are-( best suited to lomi-terrin. off- line pktririiig. This
is effective for static en vi )riiiients. buit niot Ihr con~trollinig anl auitonomous
agent. whilch t~ypically operattes inl a dynamic emiivirominienit. A not,1her st reugt Ii
of dellwi )rtti xe systems is thici r ability to syntitnesize plants whilch may rinterleave
step)s (lesigriedl for multiple interacting goals fromn tim relatively low- level in plt
of domlain) operators. We hiave dlesignedI a hyvbrid reciedlbrt vesstemi
rIl a; i at. en ipt, to coilbi lie t. hese coniplemniatary sets of capabilities Oin 01

Ill 1. Iiis paper wve descri Ie our arch ite('t tire. wh innl integvratesa it-rert ive sys-
tern aiun a deliberative lplali cr' that. hlas beenl riiodi fed to be all ilist ancv of anl
anyt~inicn algorithml [3]. TI'le reactive system iises liatid~-coded planis to react Inl
situiatiorns foreseen by tile algenti bin lder and t~i ne-crnt ical situatoions. \Xbenn the ________

reactivye systemn has nio app)ropriat~e pre-conipiled plaiis or hias extra processin,-
tilne, It. callIs oil thie deli berat,i ye system. The two (olinportent, svsi emis and~ tlie

ititegraltlonl are dIescrib~edllii sectoion 2.
Beca use We doii't want., to lose reactivi ty, we titnist, arrange for .Hie plan ier Ui

*to Ibe i ~uritri ipted if n~eccssar rv before it. coimpletes at plani. T ils is currently .....

achi ieved I)I passing a fi x ' ti tine b)0111( to t, ie plarl ncr, whicli solves as ianix
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goals as possible within the tiime bound before retliitirig control to the reactive

system. In order to do this. we modified the planner to be an anytime system.

as described in section 3. Since we do not make any fundamental changes

to the planner, we are able to take advantage of the body of work that has

been done with classical planners, such as the use of abstraction [181, machine

learning to improve planning performance [21, 11, 151 and derivational analogy

[27, 16].
To give a feel for the type of behavior we have been able to get from our

architecture, in section 4 we provide two traces of the system controlling a

simulated household robot built in the Oz system [1]. In section 5 we present
the results of some experiments we ran in the household robot domain as

evidence that our hybrid agent compares favorably with an agent hand-coded
specifically for this domain. In section 6 we discuss some work related to our
own. Then, in section 7 we analyze some of the strengths, weaknesses, and
tradeoffs in our architecture and in section 8 we discuss some avenues of future
research.

2 The Architecture

We will tirst describe the reactive and deliberaI iv, systems and t lien describe
how thev work together.

2.1 The Reactive Planner: Hap

The Hap system [20] is designed to execute plans for achieving multiple. pri-
oritized goals. It starts with a set of pre-defined goals and hand-coded plans
for achieving those goals. The hand-coded plans are designed to allow lHap to
respond to its environment in a timely manner.

Hap.1 cycles through a set, of decisions that conchides withi the choice of
an action to perform. 'V'lln first st.ep in eachl cycle is to choose a goal node
to ex pain I from the set of g0)oals in the agent's zcI'ir, plan IrC, Ilased on their
priorities. There are three types of goal nodles: (1('s which represent physical
actions. rncnial-acfs which represent internal actions aind subgloals.

If a mental-act is expanded, arbitrary lisp code associated with that mental-
act is exccuted and Hap chooses another goal t~o expand. If an act, is expanded.

Hap stops processing and performs the chosen physical action. If a subgoal is

exl)dallh. [Hap must inext choose w hat plan to rise to accolliplish the goal.

Plans are c'hosen from tie agent's prodltc/i) oU mcmory. These are rules

whose pr(co,.,dil ions test, -lihe current envirolmnienll anil I.1h beliefs of the agent.

S,. ,.Ii Ii I I



and wih lli )ecify seqiueitial or parallel sets ol •(oals to be adde(d to the active

plan tree. If multiple plans can be used, more specific plans are preferred to

less specitic ones. For instance, if an agent has a goal to go to the kitchen, a

plan that is specifically (designed to get to the kitchen will be chosen over a

plan that gets the agent to any arbitrary room.

The language used in Hap is designed to make it easy for the user to

define plans that are reactive. Two important constructs that facilitate this

are succ,;s, tests and context conditions. These change the status of the agent's

goals and plans based on the agent's environment.

Success tests are sufficient conditions for goals to succeed. For example, a

goal to clean a room can initiate a complex plan for dusting and vacuuming.

but should another agent clean the room either before or (luring the execution

of the plan. the goal should automatically succeld without the extra work of

completing the. plan. Wlie('ever the success test of a goal in the active plan

tree becomes true, the goal succeeds and Hal) makes the appropriate updates

to the tree.
Context, conditions are necessary conditions for plans to be executed. A

plan to sweep a floor is only appropriate as long as there is a broom in the

agent's halld. If the agent drops the broom or another agent takes it away.

it no longer makes sense to continue sweeping aind other plans for achievi fig

the goal should be examinied. Whenever the cotext condition of a plan in the
active plal tree becomes false, that plan fails amI the tree is uptdlated.

Hai) ailso allows for den lons that dynaminialv create new goals in appro-

priate sill jtlons. If suchi a goal has a higher priority than the other active

goals, execltut.onl of the ci r'rent plan is interrulpil(h in favor of a plan to achieve

the new goal. flap will resume its previous plai on(e it has handled this

uelxpect~e(d( event.

IiaIp is a descendant. of Flirly's RA I systemn [12] anti is quite ,li fferent from

reacttive systems like Brooks' subhsumption archiltectir, [5, 6]. Tihe subsiil np-

rionl ai)l'hil'it)Ir ir ses S-lB rules for driving aiction directtlv from the -sensed

eniviro(u )iiet., flap is a rea(ctive system iii the sellns( that it uses pre-defined

plans withIi reactive annotations (the success-t-est. and context--conditions) to

ach i'v(, its goals. This mians that flap uses explicit representattrions of goals

and plans, whi ich is impnortant for our purposes as it. allows for meaningful

comll)I))) ) ation with the t deliberative svstem.



2.2 The Deliberative Planner: Prodigy

Prodigy LO [21 is a classical deliberative planner that uses means-ends search
to create plans from descriptions of operators, given initial and goal state
descriptions. A Prodigy plan is a linearly ordered sequence of operator steps.
Given a set of goals described in a typed first-order logic, Prodigy repeatedly
selects a goal, an operator and a set of bindings so that the operator's effects
will unify with the goal. Preconditions of the operator that are unmatched in
the 'current state are then added to the set of goals. Prodigy produces plans
that achieve multiple goals simultaneously. Goal statements as well as the
preconditions of operators may be arbitrary expressions of first-order logic.
involvinig existential and universal quantification.

The search that Prodigy conducts involves a nwimber of choice-points, and
Prodigy rises control rulc.s to represent information about them. These choice-
points occur when it selects a goal to work on, an operator to achieve the goal
when there are multiple ways to proceed, and Ihindings for the operator when
different objects can be used. Control rules can also suspend search paths and
move to different ones. The control rules are if-then rules whose left hand sides
can access information about the current state of the world as well as the state
of the search process.

Prodigy does not (yet,) represent uncertainty or non-deterministic opera-
tors. or interleave plan execution with plan synthesis'. By default, Prodigy
does i)otl prodluce more than one plan to achieve a goal, although it. can repre-
sent a, plai as a partial order [26].

2.3 Integration

flap is designed to react, quickly and intelligently in a dynamic environment
by using stored behaviors when possible. Prodigy is designed to plan for sets
of goals that may interact. and to learn t.o plan more eff'ectivelv. \Ve integrate
these two systems so as to retain the strengths of each by giving primary
control of the agent to Hlap. Hap keeps the tree of goals and plans that the
agent is pursuing up to (latle. When there are stored plans available or there
is a strict. time constraint, flap will usually act iii a pre-programnimed way.

Wheni lap has extra time to act or there is no stored plan to handle the
cnrrerit situation, Hap may call Prodigy. Plamnni rg is considered a behavior like
a ithimig else flap does', so the conditions iiider which Prodigy is called are

1This constraint is relaxed ini Gil's work on learning by experimentation [14].
"2It is actially achieved wit It a Hap mental act. See section 2.1.



contained i, the pre-defihed Hap productions. Thils allows the agent builder
to create agents that deliberate more or less a;s desired. The call to Prodigy
includes a t ime bound, so that the agent does not lose reactivity even though
planning may take an arbitrary amount of time to complete.

* When Hap calls Prodigy, it passes a predefined subset of the agent's goals.
Because Hap and Prodigy have somewhat different notions of what goals are,
not all Hlap goals are expressible as a Prodigy logic expression. Hlowever, all of
the goals in the active plan tree that can be so expressed are passed to Prodigy

for planning.
Whereas Hap only pursues one goal at a time, Prodigy, as a complete

planner, can create an interleaved plan that achieves a number of goals si-
multaneonsly. This allows it to cope with resource contention and to produce
more efficient plans. Prodigy takes the set of goals with priority information
and a time bound, and uses time-dependent planning techniques to come lip
with the best plan it can in the given time. This means that tie plan may
not solve all of the goals but, if it solves any, it will solve the ones with higher
priorities. Tlime-dependent planning is discussed in section 3.

The integration works, it part, because the communication between Hap
and Prodigy occurs at an appropriate level of abstraction, both of state and
operators. Like other researchers [13, 24], we have used all abstraction boiind-
ary between the reactive and deliberative compoiieiits of our architecture to
address one of the major p)roblems facing planning systems in dynamic worlds:
a plantningi system must invest a certain amount. of time to create it plan even
though tdhat plan is based on assumptions that. ,hiarige over time. For this rea-
soni. (lelilerative planners typically assume a static or near-static world. \Whiile

this allows the planner to conistruict a plan, in a dyinamic d(omain this plan will
fre(iient. ly fail, because some of its underlyiig assumnpt ions have become false
since tie plan was coiisti, c-tedl. This is One of tle primary reasons deliberatiVCy

planmers have been uisccmessfuil as agent architect. tires.
Itsteaid of changing the static-state assumption that. the planner makes.

we cai imprrove the quality of the plans by inaking the planiner plan in a
more static state. Since the, environment cannot be easily changi'd, we instead
provide the planner with an abstraction of the state that tends to inclide the
static elemients and exclitide the dynamic ones, a id allow Prodigy to plan ill
that stuite.

Exaimiples of the static elements of a state are thle location aiid connectivitv
of rooims aii(l fiirnri ture. Exautiples of the dynamic elements of tle state are
the lcalion of other agenits and tdhe fact that a given loor is Opeln or closed.
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So, Prodligy looks at the world with many of the dynlamic elements filtered out
and produces plans that rely only on the more static elements of the state.
In addition it is possible to pass to Prodigy a notion of how rapidly various
domain facts change, for example in terms of a Markov process, and have the
planner reason about this information while constructing a plan. This is a
current research topic in Prodigy that is not expanded upon in this paper.

Prodigy uses the abstract state to generate abstract plans. By an abstract
plan, we mean a plan that is a sequence of Hap subgoals instead of a set of
concrete actions. Hap uses its set of stored reactive plans for executing these
subgoals in the dynamic world. Hap is able to fill in the dynamic details that
Prodigy' did not plan for. Also, Hlap will often have numerous alternative plans
for achieving a subgoal, so a single Prodigy plan can generate very different
behavior depending on the current state of the world.

This process might work as follows3 : our robot agent, Mr. Fixit, is in an
environment as pictured in figure 2. Hap generates the two goals of recharging
the robot's battery and dusting the bedroom. flap passes an abstraction of
the state to Prodigy that looks like this:

(and (itn recharger closet)
(in fixit kitchen)
(dirty bedroom))

Obviously, much of the state has been left, out, like the connectivity of
rooms and the location of a number of movable objects. Prodigy uses this
state and generates the following plan to achieve the two goals: ((goto closet)
(recharge) (goto bedroom) (dust bedroom)). Each of the operators in the plan.
goto, (lust. and recharge, are [lap subgoals, and Hlap's production memory
contains reactive plans for achieving these goals. These plans are designed
to be iilt1erilipted aind Ireslartl II ill liost cases an1d typically have 'ontitinigeIIc\
plans for various problems thatl may be encountered. They also take into
accountl the dynamic elemienits of the world. So, where Prodigy just plans to
(goto closet), -lap deals with. for example, unhwking and opening doors along
the way.

The actual level of abstract communication betweeni ltap and Prodigy is
not iiiiiquely determined. We could have passed information about the connec-
tivity of the roomis to Prodigy as well as the stale that we did. \Ve made the
decisions abiout what pass to Prodigy by hanid to best, fit our domain. There

aThis is a siniplified examnphv.
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tmavy bC sie automIatic wai\'s of helping deci(de wliat, tWo include iI the abstract
state, hitil generally we exlect these to be domaiii-,lependent decisions.

3 Time-dependent Planning

We aim to allow agents built with Hap to construct plans without sacrificing

reactivity. A necessary condition for this is that Prod~gy be able to respond

within a bounded time period - sometimes with less time than it normally

needs to complete a plan. If the planner is unable to suggest at least some

action in these situations, the agent may become frozen, unable to make a

reasoned response to its environment.

A number of different, types of algorithms have been proposed for time-

dependent problems. Fixed-time algorithms always use the same amount of

time to compute their oultput, regardless of their input. Variable-time al-

gorithnis are given a time bound as a separate parameter, and will produce
outputs of different qualities for different time bounds. Anytime algorithms
[3] are not given a time bound when started, but can be stopped at, any time.

and should return a reasonable output whenever stopped.

We have modified Prodigy to be an instance of an anytime planning algo-

rithni. bitt, in this paper wei use it as a variable-time algorithm by having lHap

pass a itinre bound when it calls Prodigy. The reason for this is that although

an anytime algorithm may sometinies be more useful, Ilap and hProdigy must

be rin concurrently in ordh'r to use it, and this has not Yet been implemented.

3.1 Anytime Planning in Prodigy

Prodigy is made an anytime planner by slightly modifying the algorithm de-

scribed iii section 2.2. The basic idea is to keep track of the best state encoin

tered whil(, planning, where the goodness of a state is defined to be the sum

of the utilities of the top-level goals that are achieved in the state. hlere is the

mo(lified version of the basic planning algorithm:
Prodigy is given a conj,,itction of goals, a set, of operator schehieas and

control rniles as input. These top-level goals are p)rovided with dlemons, which

will force a new state to be (ompl)ared against. a "bst" state whenever one of

the goals becomes true. The set of active goals is initialized to the top-level

goals.
With the d(emons and itiitial state score in place, Prodigy begins to plan

as normal. It, repeatedly chooses a goal from the set, of active goals, an(l an
operator to achiieve the gamil. If tlie operator can b1e al)l ie'd to the cui rrent



state. it chooses whether to do so or delay application. This choice enables
it to solve nonlinear problenis (see [26] for details). f it chooses to apply the
operator, the state is updated appropriately. It may then choose to apply
other operators whose application have been delayed or choose another goal
and repeat.

Whenever on operator is applied, the values of some state literals are
changed. If the truth value of a top-level goal is changed, the demon adjusts
the current state value by its goal's utility. Since the state score is changed
incrementally, maintaining the score has no significant cost. If the score is
the best so far, the new state and score are saved along with a pointer to the
sequence of operators that produces them.

If Prodigy is interrul)te(d before it completes, it returns the plan for the
current best state along with the state and its score. This allows Hap to
determine how good the piairtial solution is. In our current implementation the
interrupt will occur after a fixed time-bound, bat this is not necessary. When
we have Hlap and Prodigy running as concurrent processes, Hap will be able
interrupt Prodigy at any time and this algorithm will still work.

If Prodigy completes a plan before an interrupt is signaled, it returns the
plan immediately. In future implementations we will consider ways to improve
on the (quali ty of the plan Ibefore the interrupt is signalled, although Prodigy
will still sigmnal to Hlap that it complete plan is available. We discuss this further
in section S.

Note that this modified algorithm does not take significantly more time or
space than the original Prodigy algorithm to find a complete plan. The extra
time t.o initialize the demons is linear in the immmnber of top-level goals, and
the extra cost of tracking the best state is small compared with the cost of the
search. The space required to save the best current plan is generally smaller
than the size of the final plan returned. This algorithm is much better able

to deal witIh problems where Prodigy is not given emioigh time, to produice a
complete pilanl, however.

3.2 Discussion

M uch of the work to d(ate on anytime planning systems has simplified the
planning task significantly. In [4], Dean and Boddv state that "most useful
anytime algorithms we know of apply to sufficiently simple problems that any
interesting planning problem will require combining the results of several any-
time algorithms". However, it is the essence of nonlinear planning problems
that there iS no guarantee thai combining the results of planning for individual



Figure 1: Simple planning domain.

subproblemus will vield a solittion to the set of siibprohlerns. XVe have (level-
oped an anytime planner that canl handle tasks as complex as an:- 7.oniplete.
nonlinear deliberative planner.

As anl illustration. consider the following scenario. A child ias thle goals of
plaving with a toy anid eat.nrg somne food. Suppose the initial world is set lip

as shown Iin figure 1. There are to~ys in the living room arid kitc(hen, anid the
food is in the kitchen.

Using a standard anytime dlecision Iprocwedlri as described Iin [41. thle child
might set, up two separate processes, one for the goal of playing with a toy anid
onle for. thll'goal o- 'ati iil food, arid then decide how ninlch timei to allocate to
each. If' the goals have equal lutility arid are allocatted roughly equal amiounts
of timie. thle procedure dealing with thle goal of'1 davyitng with a o\- xwill return
first, wvithI t he plan to go to the Ii vinrg r-oolm. If the chld1( follows this p)ala.
it will he unable to discover* Ihle optimlal planl. for1 which It, need only g~o to

kitchen. It' the chilId gave th le coljij uction of its two goals to it lelilberal i xe
planninirg system, it would not return unt.i1 It Iit. atI solved bo0th goals arid might
still suiggest, moving to the living roomn first.

Ilii our modified algorithimi, however, what. happens depends onl the amiount
of t~ime allocated to thle plalliner. Thle plariier fitrst. picks one of the goals to
work or!. sayv thle goal of plavyinrg wvith a t oy. Whele this is Solvedl. it, plans for.
the goal of eatinrg Some food . If tile t i me Iilriiit. rI lits owt, before H ie second goid
is Solved, it returns a plan to move to tile ]Iivilr 1,g0room arid p~lay xvi tli the tox.
The chldnt wonuId Lhen havcl t~o r~e-invoke th le 1)1aniier xwithI the Secotid goal at.
somne later stage. If time a 1 loxvs. thle plannrer xwill also solve the second goal
arid~ conme iiI) with the saniii plan as thle other rriet,hiods, rianicly to go fi rst, to
the Ii vi rig r-oom arAd then t~o the kitchen. I lowever., if the deadl inie is still riot
met, the systemn keeps sear-chlirg, for a better soluitioni, atid given enouigh t~infil
will fi iid the optimial solutiioni of headinrg directly t~o thi kitchen.
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Sunr-o Bedron

Figpire 2: Rough layout. of the simulatedl houisehold robot environment

4 A Household Robot: Mr. Fixit

4.1 Traces

We have designed and bluiii? a simirulated liousehold robot agent.. MIr. Fi Xit 4
.

using thIis arch Itect, tre. MIr. Fixi t lives InI a sliminilat ed environment built, with
the ~ e Oz-svn[1.Fgr gives a rough layoit. of the iniitialI environment

that Mr. Fixit inhabits. Many of the (letails of the world ha",- beenl left ouit
as they are unimportant for the behaviors dIescrib~ed here'. Pire pla!!cr is a
hum~lan iiser that is also int eracti ng wvith tire slimirlatilo.

F.iguires :3 aind I shov iwo traces fromi run s of thinis slimiulat ion Ih traces
have ireeni edited for brevity anid clarlit. 'Ilire Informiationi Iii Iev traces I,,

that, of all omniIscienit thlird p irty. -lT'ypically t lie umer will cont rol the pla~yer
by tyvpinig text co0mmilanId:. anil 1 receive sensory mifoinuationi about, the, world as

natu ral Ianliguage dlescri pt ions. The simulation alIlows each agen to choose all
action ir int round-robin fashion arid keeps time iii discrete units.

NI r. F xi t begins the ilintilatioin with a mrodeld of the world created by
walk inrg ti brough the worldI ounce. H owever, given'i that Mr. Fi xi t has lrn i te I
sensinig abilities aiid there is ant un predict able User i ni the simiulat ion, Iiis model

"1This exanuide was~ inspired by [251.
-'1wieri are roughly ?15 objects inl thre Sim[fllIationl.
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Fixit: *SAY I amn beginning my roundts."
GO0-TO Dinting-Roomn

'GO-TO Sunroom
*SAY "Hello." to Player
'GO-TO Spare-Room

Player: *GO-TO Spare-Room

Fixit: 'SA*' "Hello." to Player
GO-TO Sunroomn

'GO-TO Bedroom

(Plan: goal: (recharge battery)
time limit: I second
plan: ((goto closet)

(recharge))I

Player: *TAKE Trash-Cait
Fixit: 'GO-TO Closet
Player: 'GO-TO Sunroorn
Fixit: *R FCHARGE Fixit using Baiiery-Recharger
Player: *D)ROP Trash-Can
Fixti: 'GO-TO Bedroom
Player: *CGO-TO Bedroom
Fixit: *SAY "Hello.* to Player
Player: *13REAK China-Cup

IPlan: goal (thrown-ou -'r.ý. -)

fiime limint: I sec, Ad
plan: ((goto cup)

(get cup)
(goio trash-can)
(put cup trash-can))j

Fixit: *lAKE China-Cup
'GO-TO Sunroom
*PU T China-Cup in Tradi-Can

Figure 3: Sa niple trace of the hlousehold robot

of thle world will often be incomplete or incorrect,.

The robot has a number of important goals that define its behavior. They

are. fromn most to least important: recharge bat tery when low, clean tip brokent
oject~s, greet the plaver. dulst di rtv roonis, atd roa Hit~l tl lotilse looking for

tasks to perform. Demions (leterillirle wilelt trite goals become1 atcti1ve -_ for

exam pIe. tilie g-oal to gi1-eet. theV playVer ts oiliv activye whlen M r. U I Xit COT1es

across the plaver.

Ill ligil re 3, "Or. Fi xil bcgIleil11 roamlinig the littise, as there is nothing else

that, tteeds t~o be (lone linin~ed iately. Whten lie en coiln1ters thle player inl the

suliroolit. lhe inlterrupts htis p~lanl to roam the htoutse andl greets the player. He

thettre ti ritms to Ili,: previous ehavior. Fi xit 's rounds(1 eventua~lly take himl to

tilte 1 e(Irooll . WNhjile ill thet b~edroom, Fixi t ttotriCes hiis battery riumn in g low

and~ calls P~rodIigy. Prodligy el iirnts a plait wit hinl thle oiven tittie limitl of one



Player: *BREAK Chiiii-Cup jPlan: Goal: (and (clean-dining-room)
Fixit: 'GO-TO Sutiroom (thrown-out-trash))

Time limit: I second
jPlan: Goal: (and (recharge) Plan: ((goto jar)

(thrown-out-trash)) (get jar)
Time limit: I second (goto trash-can)
Plan: ((goto recharger) (put jar in trash-can)

(recharge) (goto dining-room)
(Soto cup) (dust dining-room))I
(get cup)
(goto trash-can) Fixit: *TAKE Jar
(put cup trash-can))!

(Plan: Goal: (and (clean-dining-room)
Fixit: 'GO-TO Bedroom (thrown-out- trash)

'GO-TO Closet (recharge))
*RECHARGE Time limit: 0.5 seconds
IGO-TO Bedroom Plan: (.(goto recharger)
'TAKE China-Cup trecharge))l
'GO-TO Sunroorn
'GO-TO Spare-Rooni 'GO-TO Suntroom
*PMT China-Cup in Trash-Can 'GO-TO Bedroom

Player: 'GO-TO Sunroom
IPlan: Goal: (c lean-din ing- room) Fixit: 'GO-TO Closet

Time limit: I m-cond *R[i CHIARGE
Plan: ((goto dining-room)

lduv dining-room))! IPlan: Goal: (and (clean-dining- room)
(thrown-out-trash))

Fixit: 'GO-TO Sunroom -;ne limit: I second
'GO-TO Dining-Ro-om Plan: ((goto trash-can)

Player: 'GO-TO Sunroom (put jar traish -can)
Fixit: *DUST Dining-Room (goto dining-room)
Player: 'GO-TO Dining-Room (idust dining-room))!
Fixit: 'SAY *Helln " to Player
Player- 'BREAK Jar Fixit: 'GO-TO Bedroom

'GO-TO Spare-Room
'PlTT Jar in Trash-Can
*t;O-TO Sunroom
*SAY -Iiello.' to Player
*'t0-T() Dining-Room
*DUlST Dining-Room

Figure -1: 'Saiiple trace of the lioliselold robot,

sIcoin I anld Fi xi t begins- executinhg the plan.
Ill tile ileahitimie thet player moves the trash canl to the sunroom and then

groes int lt 0lie bedroom andI breaks a china cup. Fixit. has finished recharging
ahlld not ices tile broken ct ip. \gain, Fi xi t calls Prodigy and it returi s a plan
for disp iosinIig of th le cup. Tllis plani is generat ed ililt er tile faulty assumptionl
that i lie, tr ashI (ali is sti Iill I the spare rooni Wh\U en F xit (Toe's to execii te the
plan. lht wqver. het hot ices Itle trash rim ill tile stilroomi and is able, to adapt
witlhoii re-;)laiiling.

Ill (igi ire 1, vi r. Fi xit is already in the spa rt room performinirg romid ~ s
while thle PLilver is in tlit' b edroom. - The, plavei- breaks the cup. Fixit. notices
the brokt'l ctup at the saline tI liie that, his battery nieed s recharginig. Prodiigy is

not'Ifiet Iof I. ile two goals andt Iis alle to Iiid apjlaii to solve themi I tot~li within one
secOlldl Fi xIt, exet ttes the plan without. any pr-oblemies. Duii-ng f lie, execuitionl
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of the plan Fixit goes by the Player twice without stopping for the traditional
greeting. This is because the current plan being executed has a higher priority
than greeting the user.

Once the two goals are accomplished, Fixit notifies Prodigy of a goal to
clean the dining room, which is planned for successfully. During the execution
of this plan, the player enters the dining room and is greeted because dusting
is a low priority goal. Despite the warm greeting, the Player decides to break
the jar. Fixit notices this and plans to clean up the mess and then return to
dusting. While cleaning up the broken jar, Fixit's battery again gets low. The
three pending goals are sent to Prodigy along with a half second time limit'.
Prodigy is able to solve only the goal to recharge in this amount of time an(l
Fixit executes that plan successfully. Once that. is done. Fixit calls Prodigy to
replan for the other two goals and executes them.

4.2 Discussion

In this section we look it little deeper at what's behind the design of MAr.
Fixit. On() of the main concerns in building a hybrid architecture is how
quickly Prodigy is able to plan for goals in the donmain. If Prodigy isn't given
enough time to generate plans for even single goals. then the agent is going to
be stuck.

On the other hand, if we know that, Prodigy is going to generally be given
more than enough time to achieve some slbset of goals, then there are tradeoffs
in speed vs. plan interleaving. For example, say Fixit knows about 2 broken
objects that. need to be thrown out. If Prodigy only has time to solve one of
the goals, it. will return a plan that may be sub-optimal with respect to solving
both goals.

Time bound (seconds)

0,25 0.50 1.00 2.00

1 0.90 0.98 1,00 1.00
lumber of goals 2 0.80 0.96 1.00 1.00

4 O.38 0.52 1.00 1 00
8 0.13 0.16 0,62 1.00

Table 1: Average proportion of goals solved.

We tested Prodigy's ability to solve goals quickly in this doiallin by giving
it prol)lenls to solve with varying numbers of top-level goals an(d varying time

6'T he tittne hound was set by hand, hilt could also be slt by Hlap.
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boundIs. ['he results of the test are reproducedl in table 1. The table shows
the average number of goals Prodigy was able to solve out of increasingly large
goal sets. We can see how increasing the complexity of the problem affects the
amount of time Prodigy needs to come up with a complete solution. Larger
goal sets make more complex problems because of the increased chance of goal
interactions and the greater number of decisions the planner needs to make.

For example, the table shows that when Prodigy has two goals to solve and
a 0.5 second time bound, it is able to solve an average proportion of 0.96 of
the goals - or 1.92 goals on average.

When Prodigy is givew a 2 second time bound, it can always solve the
goal conjunct in this relatively simple. domain, making the time-dependent
planning redundant. With smaller time bounds, Prodigy is only able to solve
for a subset of the goals. If Prodigy only returned complete solutions Hal)
woulhn't get any useful information in these time-critical cases.7

This information can be used to guide the design of the domain specification
given to Prodigy. If we know that Prodigy will often only have 0.25 or 0.5
seconds with which to work, we will want to generate simple serial plans. If
the domain allows Prodigy to take 2 or more seconds, we can write control
rules for Prodigy that will produce more efficient plans but that will usually
take longer before completely planning for any single goal.

5 Experiments: Deliberative+Reactive vs. Reactive

We tsed the household robot domain as a testing ground for our architecture.
We have already discussed some of the obvious benefits to using a deliberative
planner as part of an agent architecture, but if tile architecture doesn't perform
well, these benefits may be overshadowed. To evaluate our architecture we
decided to test it against, a purely reactive agent. This agent was written
entirely in flap antd was ,hesigned specifically for this domain. In general. the
hand-coded plans were siinilar to the onmes that Prodigy generated. but we also
added specific interleavew, plaus for throwing out multiple pieces of garbage.
We did mot, expect the hybrid agent to do quite as well as the reactive agent.
but if ourl architecture cold co(ome close, then we can real) tile benefits of usingg

7This dal.a was collected on a Hewlett Packard 720 workstation. The 50 test problems
for each data point were randoinly created with repetitions removed. To he more complete
we coild have also collected information about how oftei specific goals tend to arise in the
domain and how long it takes to plan for each goal type (e.g. planning to dust a room is
generally ,asier than planning to throw o(it. trash).
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a deliberative architecture without concern for losing in other areas.
The domain described in section 4 was modified as follows. First, we

changed the procedure for throwing out garbage so that the robot first had
to get. a bag out of a cabinet in the kitchen, then put the trash in the bag,
then put the bag in a trash bin in the sunroom. Second, a second robot.
the Destructo2000 was added to the environment. This robot would generate
cups and break them on the floor with some probability that we could control.
Third, a (slightly unrealistic) phone was placed in the bedroom. With a 10%
chance the phone would ring (luring any turn it was off the hook. If the robot
hadn't, answered the previous call, it was lost. IUntil another call came in.
the previous caller would keep ringing. Fourth, all the rooms started in need
of d(usting and didn't become dirty again once dusted. Fifth, the player was
removed from the simulation. Sixth, the new goal priority ordering was (from
most to least. important): recharge battery, answer phone, throw out trash.
and dust, rooms.

The phone and the bat t.ery created occasional interrupts in behavior that
were kept constant over every run. We were able to control how dynamic the
environment was by changing the chance that. the Destructo2000 woul drop
a cup). We ran both the hybrid and pure reactive robots with this chance at
5%, 8%, and 10%. We also ran the hybrid system at 3%. The data presented
represent the results over ItM runs for each robot-environment pair.

The hybrid system was set up to allow Prodigy a 3 secon(l time bound.
Although we didn't do as complete an analysis of this version of the domain
as was described in section 4.2, some informal experiments showed that the
plans required to handle the inew trash procedure required enough time that :3
seconds was not enough to consistently create interleaved plans for throwing
out garbage. Because of this, the hybrid agent always generated serialized
plans f'or throwing out trash . These were sub-optinal plans, bwt Prodigy was
always able to solve at least one goal in the allor ed filme.

Figure 5 graphs how well Mr. Fixi t didI ii keeping tip with the De-
structo2000. It's fairly clear that at 5%,. 8%_ and 10%, Mr. Fixit is falling
further and further behind and eventually will be swamped with clips. At 3%.
however, Mr. Fixit is able to keep up with the dropping cups.'

The purely reactive agent that we created had hand-coded plans for throw-
ing out multiple pieces of trash simultaneously. Because of this we expected

" Note that. the number of cups represents the total mnutber of cups o0t the itloor over 10
ruins of the si unlation.
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the reactive agent to perftorin better in cleaning uip after the Destructo2000.
Our expectations were realized and figure 6 shows how at 10% the reactive
agent is falling behind, but at both 8% and 5% the robot seems able to keep
up.

The relative performances of the two systems in picking up cups was ex-
pected. The reactive system, which was designed to handle that particular
task more efficidntly, did better. That the hybrid system fared as well as it did
on this task is reassuring. Admittedly, this is still a relatively simple domain
so differences in performance will tend to be small, but at the same time mov-
ing to more complex domains will make it even harder for builders of reactive
agents to create a compete set of behaviors for all situations in a reasonable
amount, of coding time.

What was somewhat surprising about our results was how well the hybrid
system did on the other tasks it was given. First, both agents performed at

100% on battery recharging, which was the most important goal the agent was
given. Second, the hybrid agent was able to answer the phone at a rate of 78%

as compared to 61% for the reactive agent. Third, figure 7 shows how well
the two agents did at dusting the rooms. As expected, in the more dynamic
domain, the agents had less time to clean rooms, hut the hybrid agent was
able to do almost as well as the reactive agent in the 10% domain and even
slightly better in the 5% (/domain.

A plauisible explanation for the relative performances on the battery recharg-
ing, phone answering, and room cleaning tasks is that the reactive system
tended to spend more time between the kitchen and the sunroom picking 1t)
cups. Meanwhile, the hybrid agent was more likely to be in other areas of
the house, especially the bedroom and the closet, which made answering the
phone and recharging take less time. In other words, we expect that this is
probably a. lpro(lict of the dlomain and not attribu table to our architectulre.

Fiially we consider the time taken by the agents. Each time cycle iII
the si n11 ltiolls with tile reactive agent took 9.2 secords. This Includes boti
agents, tie physical worldI simulation, and the data gathering. When we
changed to a. hybrid system, this increased to 9.7 seconds. This means that
on average, the hybrid agent took only 0.5 seconds longer to choose an ac-
tion than the reactive agent. Furthermore, because of the time bound, the
time used in p)lanning never exceeded 3 seconds for any turn. Finally, because
Hap) controlled when Prodigy was called and for how long, it could have be
designed to specifically not call Prodigy or to call Prodigy with a small time
bound in some circumsta.nces (e.g., a low battery) in order to ensure that. the
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Figure 7: Robots cleaning rooms itl dynamic domain.

agent acted quickly in time-critical situations. As we were more interested
in maximizing deliberation in this agent, we chose not to make such design
choices.

6 Related work

The two distinct parts to this work, the architect,,re and the anytime planning
algorithm. both have relations to other work in the field.

6.1 Architecture

Our work is similar in spirit to that of Payton, Rosenblatt, and Keirsey [22].
They have designed a two-level architecture where the high-level planner geni-
erates plans for navigating an autonomous land vehicle that are then executed
by a reactive low-level system. This work differs from ours in that they are
primarily concerned with path planning and we are concerned with complete,
general-purpose planning.

The deliberative/reactive split with l)lanning at an abstract level is closely
related to the work by Erann Gat [13] on the ATLANTIS system. That
architec'tl,umr is somewhat dliff'erent in that the reactive system is subsumption-
based and there is a separate controller module (which, like Hap, is based
on 11irhy's RAP system) that, switches control between the two levels. We
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conibitied the reactive and controller modules wi thin the reactive level. Gat
also had an extended deliberative level, which performed tasks such as stereo
vision processing, but had a scaled-down planner. We chose to use a full
planning system. Finally. Gat's domain was simple enough that he didn't

have to be concerned with anytime planning at the deliberative level.
The Sepia architecture for planning and learning [24] also takes a very

similar view to our own. The major differences appear to be that their reactive
architecture is subsumption-based and they use a different method of anytime
planning (that of Elkan, discussed in the next section).

6.2 Anytime Planning

Elkan [9] has proposed an anytime planning algorithm that works by gradu-
ally relaxing assumptions until the plan is correct according to the planner's
knowledge. If this system is stopped before completing its task, it will return a
plan that is not necessarily correct. Our method on the other hand will return
a correct plan for a subset of the goals or a less than optimal plan for all of the
goals. This is preferable if the goals have roughly independent utilities and do
not clobber each other, and this is generally the case in the examples we have
studied.

Druiiniond and Bresina's ERE system [8] uses an anytime planning tech-
nique that is based on forward projection. As they admit, the search space
rapidly bhcomes very large for realistic problehms, and would relitire exten-
sive control knowledge. Our use of means-ends analysis as well as control
knowledge helps reduce the search space.

Washington and Hayes-Roth [28] and Hendler [17] have also studied the use
of abstraction as a means of dealing with time bounds. We plan to investigate
using Prodigy's existing ablstraction mechanism in our current system. This
will provide additional planning granularity in situations where not even one
subgoal can be fully planned for.

Missel and his colleagues [23] and Korf [19] have investigatcd tradeoffs in
the search mechanisms to reason about time hounds effectively. This work
on search can be viewed as complenentary to our own, since one must still
face the eventuality that not all goals will be solved in the tinie allowed or
all interactions fully accounted for within the time bound. Prodigy is able to
make use of these search algorithms.
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7 Conclusions

Let us now take a step back and review what our goals were in developing this
architecture and analyze how well this particular system sa'isfies those goals.

We don't believe that either purely reactive or purely deliberative sys-
tems are sufficient for controlling autonomous agents in dynamic environments.
Subsumption-based reactive systems don't have the internal representations to
display long-term, goal-driven behavior to any degree. Reactive systems like
Hap solve this problem, but are still hard to code in that all situations must
be foreseen by the agent builder and goal interactions must be specifically
accounted for. For example, the reactive robot described in section 5 had to
be designed to interleave plans for throwing out multiple cups at once. Even
in a domain as simple as this, accounting for more complex goal interactions
would be extremely difficult,. Despite these drawbacks, reactive systems have
generally been fairly successful because of their ability to execute in dynamic
situations. Reactive systems also allow designers to create agents with idiosvn-
cratic behaviors that are more interesting or realistic where that is desirable.

Oil the other hand, deliberative systems are better at pIdnning for interact-
ing goals. b)ut don't gencrally perform well ii d(huainic domains because the'y
assumie thic environment is static. We also want to dIraw on the significant re-

search that. has been done with learning, abstraction. and derivational analogy
in deliberative systems. So far, we have not taken advantage of much of the
work baased on deliberative planners, but as our system is almost unchanged
froni the normal Prodigy system, we are optimistic that this will be feasible.

The hybrid architecture we built provides a good deal of power to agent
builders and we expect this to be useful in designing agents for ratlier different,
types of domains. For example, in highly dynamic domains where quick action
is vital, the agent builder can put reactive behavior to deal with most situations
into llap and design tile Prodigy system to return quickly. This will often be at
the expeinse of plan quality, because the interactionus between goals will not be
explored. in more stable domnains where Prodigy is giveni great~er amlounts of
time to plan, the plans will tend to be niuch inore efficient than those created
by a reactive system. In fact, in some situations it might be the case that
Prodigy is able to solve some resource critical Iproblemi that a reactive system
might not solve at all.

Our architecture is miot,, however, without weaknesses. Outr current model
of anytimie planning only gives credit to states that, solve one or miore top-level
goals. If progress ca-a bIe imade towards a tol-level goal but no such goal can
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be (olih-letely solved wit, 11111 the time Oiibotil lith planner will be unable to

suggest, an action. An analysis of the doinain. such as that described in 4.2
will give a feel for the ability of the deliberative system to handle goals within
specific time bounds, but this is not foolproof and occasionally the planner
may be stymied.

A further problem that is not directly related to the architecture we have
chosen is that the stochastic nature of plan execution means that. the planner
cannot know the exact duration of many of the operators in its plan and is
therefore unable to make a tight schedule. Solving this problem will require
rough models of duration that can allow the planner to schedule for the worst
case, or probabilistic models that can be attributed a probability of success.

8 Future Work

We have presented a framework for integrating deliberative and reactive plan-

ning for autonomous agents. The initial system already improves the abilities
of agents to react to unforeseen situations in a dynamic world. There are sev-
eral enhancements we are considering for the next version of the integration.

First, Prodigy currently vplans afresh each time the planner is called. Hence.
if called with the same problem, it will only get further the second time due
to the efrects of leaning and case-based reasoning. While this will give some
advantage, we would like to have Prodigy directly build on the search trace it
previously produced.

In order to do this, Prodigy needs a notion of plan, update and plan extensio,
to deterimine which parts of the search are still valid after the state has changed
and how to best fix those parts that are no longer valid. We expect this to have
a strong overlap with the replay mechanism of Prodigy's case-based system.
except that in the paradiggm we discuss here the previous plan may not. be

comphploe.
Secntl , It. tight be possible to make the planning system mnore efficient if

it were given a fixed tiime houmd and knowledge about the expected time to
solve a set of goals given the state and the agents operators. (Dean et al. [4]
use this information in a technique called "deliberation scheduling") We wish
to generate such knowledge for our planner from experience. This same type
of scheme should allow Prodigy to automatically learn when to solve goals in
a serial manner and when to attempt to interleave interacting goals.

To achieve this, simply keeping statistics oil the timie to plan for various
goals would not, be etfecttiye, sinice this time de'p)ends heavily on a innumber of
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factor•s im•rclated to the goal, including: tile other goads that miav interact, the
number and types of objects in the planning domain and the planning state.
To produce useful planning lime knowledge, one( might build the categories for
which the statistics are kept at the same time as we gather the statistics. This
task has been studied by Etzioni [101 and we aim to take a similar approach.
This could involve using explanation-based learning to build the categories
about which we keep empirical data.

Third, as these agents exist in dynamic environments with incomplete and
incorrect knowledge, we are interested in the question of plan robustness.
There are at least two distilnct avetiUes to explore here: expanding the role
of Prodigy and creating it new type of learning.

The first approach is to extend the Prodigy planning paradigm to allow
plan enhancement and contingency planning. If there is extra time after a
plan is generated, Prodigy should be able to nse that time to reason about
ways to make the plan more robust. This would include using more reliable
operators, creating contingency plans, and relying only on more stable aspects
of the state. Second, we also hope to explore some learning mechanisms that
will enable Prodigy to come up with more robust plans based on a better
understalw Iing of the dy lnamics of the environ •,ent.
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